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Abstract

--- This paper provides a probabilistic analysis of the so-called istrong"'

linear programming relaxation of the k-median problem. The analysis is ~

performed under four classical models in location theory, the Euclidean,

network, tree and uniform cost models. For example, -%ve shownthat, for the

Euclidean model and log n k'>A n/(log n)?, the value of the relaxation is

almost surely within .3 percent of the optimum k-median value. A similar

analysis is performed for the other models. We-also show~that, under various

assumptions, branch and bound algorithms that use this relaxation as a bound

must almost surely expand a non-polynomial number of nodes to solve the k-

median problem to optimality. Finally, -e--repert- extensive computational

experimentsA As predicted by the probabilistic analysis, the relaxation was

not as tight for the problem instances drawn from the uniform cost model as

for the other models. i
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1. Introduction

The k-median problem has been widely studied both from the theoretical

point of view and for its applicatins. An interesting theoretical

development was the successful probabilistic analysis of several heuristics

for this problem (e.g. Fisher and Hochbaum [8] and Papadimitriou [22]). On

the other hand, the literature on the k-median problem abounds in exact

algorithms. Most are based on the solution of a certain relaxation to be

defined later. The computational experience reported in the literature seems

to indicate that this particular relaxation yields impressively tight bounds

compared to what can usually be expected in integer programming. In this

paper we analyze to what extent this relaxation is tight. We perform our

analysis under various probabilistic assumptions and identify conditions under

which the relaxation can be expected to be tight and others under which it can

be expected to give a poor bound. For example, f6r a classical Euclidean

model in the plane, we show that the relaxation can be expected to provide a

bound within one third of one percent of the optimum value of the k-median

problem. In addition to the probabilistic analysis, we also report extensive

computational experiments, based on the solution of thousands of medium-size

problems. Some of the results predicted for very large problems by our

probabilistic analysis can already be observed on these test problems.

Consider a set X=XI, ... Xn} of n points, a positive integer k< n and
n..1

let dij > 0 be the distance between Xi  and X for each ,_

1 < i < n and 1 < j < n. (Unless otherwise specified, it is assumed that dii VAN

0, d d and dij < d + dk, for all i,j,k). The k-median problemij-j ik kj n

consists of finding a set S c X, ISI = k, that minimizes mid . (Here
i=1 J ij

ISI denotes the cardinality of the set S.) The k-median problem has the -..-"

following integer programming formulation.

-- Z.
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n n
(1) Zip- min I I dyijYij

11 j=1

n
(2) = 1 for i:l,..,n

n
(3) x kj = jr

(4) 0 < YiJ <- xj < 1 for i,j =1,...,n

(5) Xje {0,1} for j 1,...,n.

In this formulation xi = 1 if Xi eS, 0 otherwise and, for 1 < i < n, we can %

set = 1 for an index j that achieves min d

The formulation (1)-(4) is called the linear programming (LP) relaxation

of the k-median problem. In other words, the LP relaxation is obtained by

ignoring the integrality conditions on xji, 1 < j < n. The optimum value zLP

of this relaxdtion clearly satisfies Zp j zip. The bound zLp has been used

extensively in exact algorithms for the k-median problem. (E.g. Marsten [151,

Garfinkel Neebe and Rao [10], ReVelle and Swain [23], Diehr[5], Shrage[24],

Guignard and Spielberg[11], Narula, Ogbu and Samuelsson[20], Cornuejols,

Fisher and Nemhauser [3], Erlenkotter [6], Galvdo [9], Magnanti and Wong [14],

Nemhauser and Wolsey [21], Mulvey and Crowder [19], Mavrides [16],

Mirchandani, Oudjit and Wong [17], Christofides and Beasley [2], Beasleytl].)

Most of the computational experience has been reported on test problems

with n< 100. For many of these test problems, Zip Z Recently, __
IP LP*

Beasley [1] solved forty larger problems (with 100 < n < 900) and found a

small but positive gap ZIP-ZLP for many of them. The average of z Iz•P

over these problems was .0024. Z.P-LP
z -Zp

In this paper we analyze the ratio from a probabilistic point

of view as n goes to infinity, under various assumptions on the probability

w.- 4
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distribution of problem instances. We do not address the worst-case analysis

of this ratio except to note that this question was solved by Cornuejols,

Fisher and Nemhauser (31 when d <- 0. The analysis of (31 does not carry

over when the dij's are nonnegative and satisfy the distance axioms. In fact,

this worst-case analysis is an interesting open question. It would also be

interesting to know the worst-case value of zIPZLP when the dj 's are

further restricted to represent Euclidean distances. Once again, these

questions are not addressed here as we focus on a probabilistic approach.

We will often write statements like X _ u almost surely (a.s.) for a
n n

sequence of random variables (Xn) and real sequence (un). This is a well-

defined terminology of probability theory and details can be found in Stout

[25] for example. We will invariably prove that

g _ .~ .,N.

Pr(X n > u ) < '
* n=1n

which implies the above statement. Non-probabilists will be satisfied that we

show Pr(X > un ) n 0 as n * =. If Xn _ Un(1+o(1)) a.s. and Xn

u n(1-o(1)) a.s. then we write X - u a.s.

First we study the k-median problem in the plane. When the points

X1,...,Xn are uniformly distributed in a unit square and dii is the Euclidean
z -Z

distance between Xi and X 1 1 < i,j < n, we show that IPLP 00284
almost suely, K1, IP -Q2J

almost surely, for any k such that w < k < where w = w(n) .- (In- -w logn wee : n . (n.

this paper we abbreviate f(n) * a as n * - by f(n) - a.)

In a second model, the points X1 , .. . ,Xn are the nodes of a random graph

Gn(p) where p is the probability that an edge is in the graph, and d is then ij

number of edges on the shortest path from X to X We assume p > w log n

where w w(n) * - (this guarantees that Gn(p) is almost surely connected),

* .1I

" " "#" " " "#" "4 - .'.''•*# e' " " %,'**" " . "" %" ""'* *."4 ,% " "%'" ." " '.' '* " . "'' 7;a
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Z -z
2 w log n IP LPand kp2 > We prove that < < 1 almost surely, where e isn Z IP e 1

the base of natural logarithms. More specifically, if logbn < k < n where

b 1- then Zip zLp almost surely. If 2 < k 5 kpa where 0 <.

and p-0 where O<05<, define a = e if 0 = 0 and (1-)1 -  if B > 0; then
ZIP" LP f(a,) almost surely where f(,) = 1-0(-) +a (The maximum of

zI P I +aa

eft-- attained when a=1 and 0=0. When a=O or - the

function takes the value 0).

We also analyze the k-median problem on random trees and on another model

where it is assumed that the di s are independently and uniformly distributed

on[01.

In section 6, we put our probabilistic results in perspective by

presenting extensive computational experiments. %

In section 7, we show how our results for the k-median problem relate to

the simple plant location problem (SPLP). In the SPLP, the data .comprise. n

points X1, ...., X, distances d for 1 < i, j < n, and fixed costs fj 'n ij

associated with each point X , I < j < n. The SPLP consists of finding a

nonempty set S c X that minimizes min dij + j f J  (Note that, in

this problem, ISI is not restricted as in the k-median problem.) An integer

programming formulation of SPLP is

n n n --.

z ip: min d ijy. + I= f xi--1 J=1 d ~ i  J=J ,-:

subject to (2), (4) and (5). The LP relaxation is obtained by relaxing the

integrality conditions (5).

In the remainder of this section we state some useful results from the
in

literature. Our proofs use the following lemma (see Hoeffding[12]).

Lemma 1. If Y1,..,Yn are independent random variables and 0 < Y.< 1 for

~4

L... ....



5

i-I,...,n, then, for O< <I, 2

Pr(Y > (1+0)) 5 e -e 2iP/3 and

2
nu/_2

Pr(Y < (1-e)i) < e' nj/2

n
where Y Yi/n and v is the expected value of '.

Given a vector x (x :J=l,...,n) such that .x. k and 0 5 x <1

•% %

for all J, define

n n
zLp(x) :min d. ijYij

. =1 for i:I ... n . _

O<YjSxy for i,j,=1,..,n.

Note that z p min z (x)
LP= LP%*

"x = k

0 s x < 1 for J:1,...,n.

The following lemma is well-known in the k-median literature and is easy to

prove. ""

Lemm 2 An optimal solution y = (yij:i,j = 1,...,n) of zLp(x) is obtained as

follows. For each i, sort the values dij , j=1,...,n, so that

d < < ...< diJn(i),
ij 2 (i) 5 n(i)

ip-l~i)i (iWand let p be such that I X h< 1 < xh

h:j(i)

'I
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Then

xj for j Jl(i)'" M

Yij 1- . x for j j ()
h=jl(i) h p

0 for j j (i),...,j (i)
p+1 n

Proof. The program zLp(x) separates for each j into a linear program with .

upper bounded variables and a single constraint.

n
Let di diYij where the values of YiJ are those defined in Lemma

n
2. Note that zLp < . d. since this bound is derived from a primal feasible

iL i

solution. This bound will be used repeatedly in our proofs where it is

computed for the vector x defined by xj : /n for j:1,...,n.

The dual of the LP relaxation is

n n
(6) zLp max u.- v- kwi1 J= j

u. - tij 5 d for all i,j
.ij ij

t -v - w 0 for all j
i1 ij i

tiv > 0 for all i,j.

For any given vector u (ui:izl,...,n), define

. ..
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J-

Z %.P

n
0-(u) (u d + for j 1,...,n,

n

where a+ denotes max(O,a). Let zD(u) ui - k max 0j(u).

Lemma 3. zp ZD(u) for any vector u.LP,:D

Proof: It can be checked that, for any given u, a feasible solution of (6) is

obtained by setting tij (ui  dij)+, V 0 and w max. . (u).

0

2. The Euclidean model in the plane.

This section is concerned with the following Eukclidean model: n points

X1. are chosen independently and uniformly.at random in the unit square

S2 The distance matrix is given by dij f. oXi -•Xj .or

1 < i,j s n where 1I*11 denotes the Euclidean norm. We assume that

(7) k . and n/(klogn) "

The following theorem was proved by Papadimitriou [22]. .

Theorem 1 Under the above conditions,

ZIP (.3771967...) n/ /if a.s.

This result was obtained by comparing Zip to the value zC of finding k
Le

" .,P ,e ," = ,",''P . z " , ," - , ,"4' . ."Z . ."." , .";'.'W', 'e',' ,'''','.'.''.
"

"''.', .='- -" o-' '.. .''.'.".'' "', .;"



8

points in X [X1 ...,Xn} that minimize the sum of the distances to a
11 ... .X

-

continuum of points in the unit square. Papadimitriou showed that, when (7)

holds, Zip- zC almost surely. Actually, he used a weaker notion of

probabilistic convergence, but Zemel [26] showed that almost sure convergence

holds as well. It should be pointed out, however, that the continuous problem k N.

yielding zC is very different from the LP relaxation. In fact, for the LP %

relaxation, we prove

Theorem 2 Under the above conditions,

z n/k- a.s.
LP

3/

where 2/(3 ,/W) .3761264 ....

% Our method of proof consists of conjecturing a near-optimal solution to

the LP relaxation and a near-optimal solution to its dual. Then we show that,

almost surely, these lower and upper bounds on zLp are the same, up to small

• order terms. The probabilistic arguments are based on the estimates of the

tails of the binomial distribution given in Lemma 1. ':

The proof of Theorem 2 will actually provide a constructive way of

obtaining an upper bound zLP(x) and a lower bound ZD(u) on the optimum value

of the LP relaxation of the k-median problem. :.

Corollary 1. Let xj = k/n for j=1,...,n and ui : 7 for i:l,...,n. Then ,-,

zD(u) _< z _ ( and, under condition (7),

DLu zLP

Zt5-...

zD(U) -zLp almost surely, .- ''[ '

'- ,

!'.'o.',' i.Vi .'." " " , . %, '-z" " " " " . ". "".: ¢.v..-.'." . 4 .'- ' • -. - :'." .- - ."• " %,."..



zLp(X) ~zLp almost surely.

In addition, in [22], Papadimitriou gives a heuristic which almost surely

provides a solution with value zH - Zp. The complexity of the heuristic is

0(nlogn). Combining this result with the fact that zD(u) can be computed in

linear time, we have a very fast procedure which will almost surely

(i) find a solution with a value close to the optimum,

(ii) prove that the value of this solution is within .3% of the optimum.

Finding the exact optimum is much more expensive as will be shown in

Theorem 3. But first we give the proof of Theorem 2.

.. ..,-.

Proof of Theorem 2. To obtain a probabilistic upper bound on zLP, we are .
"., ...

first going to consider the LP solution

xj :k/n for j=1,...,n

n
and the values of Yij as defined in Lemma 2. Let di d i Y for

jzl
i:I,...,n. We must get a probabilistic estimate of di for i:I ,n Let

1/3 1 1/2 1, ,n L

(klogn) r and let Sr be the square [r,l-r]2. We show
first

e2
(8) Pr(d i  >_ 2 (1+0(1)) X i <- 2e- 9k

3 V77 e.r

(9) Pr(di 4- (1+0(1)) X i S S < 2e---k.

3 r

If X. e Sr, then a circle Ci of radius r centered at Xi is entirely
I r11

contained in SO. The number N of points lying in this circle stochastically

__ _ _ _ _ __ _ _ _ ,'. 2 % '. -. -. ~' 'F F .
,", .' ' " - t % % % % ",% ° .%" -% -%". -%"% - . ° ° , . . . %. ° . -.0*-.-.' .,
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dominates the binomial B(n, wr2 ) (since XI e Ci). We define independent :i

random variables Wj, J=1,2,...,n as follows:

Let

=fdi if X C CwI J
0 otherwise.

We note that E(W1 ) 2wr3/3 (j * i). If N k ] then d. < J . Now,

by Lem ia 1,

2

Pr(N <i1) Pr(N 5 (1-e)nr 
2 ) < e 2

k

Furthermore, if W = W/r [0,11, then by Lemma 1,

2 2nr2) - (n-1)2r
Pr( I Wj >_ (1+c)(n-1) --2 - _< e3 - ,., .,

J =1 
" -3-

and (8) follows.

To prove (9), we note that if Xi e SO - Sr, we can at worst find a

quadrant of a circle centered at X, with radius 2r and contained entirely

within So. The area of this quadrant is (2r) /4 and we apply the same

method as above with E(W) 4wr 3/3.

We are now ready to bound zLP.

n
z d d + d.

•i1 X.ES X iS -S
1,r *° r

By Lemma 1,

NI 'a,
. - . " . ." ." ." - .



2
n (1-2r)

Pr{IXnSI ri n(1-2r) 2(1-01} <e2

and thus

2~

Prz (1+o(l))((12) 2n 2 + (1(-r n4 : (2n+1) e- 9 -n/k

giving

(10) ZLs (1.oo(l)) almost surely.

3VVf

To obtain a probabilistic lower bound on zLP, we consider the dual

problem (6). Let ui r for i=1 ... n. Then by Lemma 3

nn

iij

For fixed J, consider random variables U. (u 1-d j)'.
-r3

Setting ui r we find 1( 3r fo i * Jand X weesShs
vaue decreas -o poort X r'whralths

9 vauesdeceas forpoits 5o 5r* Rescaling U to [0,11 and applyingii
Lemma 1to Xj eSr we find

2
n w3 9 -n/k

Pr( U n> (105e

and thus for k o( n!*~ we have __

n nirr 3

Max ( U) (l)-- a.s.
j i1

giving 4'

MIXU~* ~~. . . . * * ~ *
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12

(12 ZP n -3 2n
(12) zLP a nr (1+)knlr /3 = (1-o(1)) - a.s.

3 A-1 '

Combining this with (10) yields the theorem. 0

One might expect then that an LP-based branch and bound procedure .

performs well, since zLP provides a good bound. However, we can prove .y P

Theorem 3. Assume k/logn - and n/k 2 logn

Then there exists a constant a > 0 such that a branch and bound procedure

that branches by fixing a variable xj to 0 or 1 at each node of the search

tree which is not pruned and uses the LP bound to prune the search tree will

almost surely explore at least nak nodes.

Proof: Each node of the branch and bound tree is associated with two sets J0

and J1 where Jt = ti: xj is fixed at t in the associated subproblem} for

t:0,1. Let zLP(Jo,Jl) denote the LP bound computed at this node, i.e. the

value of zLp when we make the restriction xj t for jeJt, t:0,1. We prove

the theorem by showing that for some constants B,y > 0 (to be determined) the %k

following holds almost surely: - N

.a,,,,

(13) For any Jo,J 1  c 1,...,n} such that

J 0 n J1 :0
' Jo -8n/klogn, IJ 1I 5 yk, we have F. %

.4
,

..:.
. . 3769 n . ",< ..~~~L o' .°, .., .. .,.'.
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For then we almost surely have to branch at every node in which

IJ01 - 5n/klogn and lJ11 _ yk even if we have an optimal solution of the

integer program as our current best solution - by Theorem 1.

This implies that the algorithm must explore at least

(114) 1y~nklon yj ny( 10(l))k nodes.

Since B can be chosen arbitrarily close to 1 the theorem will follow. To

verify (14) imagine that setting xj 0 means branching to the left and

setting x 1 means branching to the right. (13) implies that our tree

contains a copy of all possible paths which make Lyki right branches and

LBn/klogn left branches. The number of such paths is precisely the left hand

side of (14). .

Let F denote the family of such pairs J0,J1. I "

Thus let jo,J1 c (1,...,n} be disjoint, {J U J u 1}

1 1, and k = k-1J 11. Consider the following solution to the associated .-.

linear program.

(0 if J Jo

.a, .-'o

xj : 1 if J e J1 ,:-;

form the sequence J1(i),J2(i),...,j.(i). This choice of yij is feasible
n

although usually not optimum. However this is sufficient since we only need

to compute an upper bound on zLP(Jo,J1). We can assume w.l.o.g. that

lJ- =Lon/klognj and IJ11 =Lakl. Let e > 0 be small and r and

proceed as in the proof of Theorem 2, defining variables W1,W2,...Wf for each

i. We find that for e < and n large V..
., .-v.

.

.-1*'.
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2-

2e 2n

Pr zLP(JO,Jl) > 2n 0 + 3)) (2n+1) e 9'

Since IFI 5 nBn/klogn + yk we find

2n 5

Pr(3(j0,J1 )6 F: zLP(Jo,J1) > -(1 + 3)) <

_ -- ...- p

(2n~l)nn/klogn + yk e 9k

Taking B 2/5, y e and e sufficiently small that 2(1+3e) <- .3769
3/wr( -e) 0%

yields

max {zLP(Jo,Jl): (JoJ 1 ) e F} .3769 almost surely.

Any a < y can be used to give the theorem.

0

3. A Graphical Model

This section is concerned with the following graphical model. Let G be a

random graph with n nodes, where each edge occurs independently with

probability p. Let X1 *.. xn be the nodes of the graph and dij the minimum r:q
i..jn

number of edges on a path joining Xi to X for 1 !5 i,j _< n, where the
j

minimum is taken over all paths joining Xi to X. Thus d is the shortest

distance between X, and Xj, assuming that all edges have length one.

Let q=1-p and b=I/q. The main result of this section is the following

.T
%? *

". . -" , ....... I..
• .. +="_"'.+'.". . ' "" "+ • " 

+
" 

"
' "* '

'=
• % 

%
" 

% "°
% % """"% " % % • " %" %

"%
""% " S '
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theorem.

Theorem 4

(a) Consider (1+e) logbn s k s n, where e > 0 is fixed.

(i) If n 1+ p . - for all 5 > 0 fixed, then Zip ZLp almost surely.

(ii) In general, we only have lim Pr(z zLp) :.
n-- IP L

(b) Consider 2 < k < logbn and p min(1,kp) > o where w-m. Then
zI - zL 1 'S<- almost surely. (Note that the condition in a(i) isZi 1l+e .

satisfied.) In addition, if we let kp ,0 < a and ,

p.8, 0 < B < 1, where a and 0 are fixed, then

z -zip zLP 1 - (1-a)+a a -'-IP L 1-) almost surely,
ZIP 1+aa

where a e if 0=0 and. (1-$)- if 0 > 0.

I ra )L

z ."

z- -,
F r 1as a function of kp when 2 < k 5 log n.Fiur 1 IP b, .:

Proof of Theorem 4(a)

(i) This part of the theorem is a careful phrasing of a known result and is

easy to prove. As dii > 1 for itj, we must have

(15) Z > z n-k.
'V P LP

41-

:. • -.....-.. -. :. -. - .. ... .. ....-..- .. , ... . . .. ..... .. ... . ... ., ...... . .. ,..'--
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(i) follows from (15) if we can show that

zip n-k almost surely.

But Zip n-k if and only if there is a set K c X, IKI k, such that,

for any Xj e X-K, there exists Xi e K such that Xi and X are joined by an

edge of Gn(p), i.e., K is a dominating set. ,..GLet ) m 21 .ad i = . p

Let m 2/ and K {X(i)k+ X ik} for i:1,2,...m. If none

of K1,K2 ,... ,Km are dominating then one of the following events occurs:

E 3 1 5 r*s < m and Xi e Kr such that Xi is not adjacent in Gn(P) to

any vertex of KS} "

Ei F where F. = (3x. X m K such that X- is not adjacenti~~~ -? iiJ-
in Gn(p) to any vertex of Ki} . :

now

Pr(EO )  < m2k (1 p)k

,.%. ~5< m2kn-(I+e) 1

21 as logbn <
- 1+n np '

- 0(n-(l+e/2 )) by assumption.

Furthermore,

m
Pr(El) i Pr(Fi) since the Fi are independent '. f

k 1:((n-kin)(1-p)k~ - .

< n-2 *1

-- ,z 27' "-1.

'p.d_% 
.
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and (I) follows.

(ii) Pr( K, is not a dominating set)

< (n-k)(1-p)k S n-c * O. 0

Our proof of Theorem 4(b) will use the next two lemmas.

Lemma 4 Consider 1 < k < n. Assume p min(1,kp) > wlogn where- log n '

w m. Then, -

Zip (1+o(I))(n-k)(1+qk) almost surely.: .. ' ."

IPN

Proof: For K c X, let N(K) be the neighbor set of K, i.e.

N(K) = (Xi c X-K: there exists an edge joining X to a node of K}.

We have

ZIP . min (IN(K)l + 2(n-k-IN(K)I))
IKIk

-', = 2(n-k) - m Ia iN(K)I.

We prove the lemma be showing that e I

(16) max IN(K)I = (1+o(1))(n-k)(1-q ) almost surely, and
IKI-k

(17) Zip :(+o(1)) min (IN(K)I + 2(n-k-IN(K)I)) almost surely.
IKILk

Consider a fixed K c X, IKk=k. The quantity IN(K)I is distributed as %,%

B(n-k, 1-qk). Thus, by Lemma 1, for any small c > 0 ii,
k_ 2 (n-k "-'"-

Pr[IN(K)l -5 (1-e)(n-k)(l-q )1 5 e-q and

".. % 
'..
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12 k,
Pr[IN(MI z (l e)(n-k)(1 q ] k <: e3e nklq

Thus we have

(18) Pr max IN(K)I 5 (1-e)(n-k)(1-q k - e - 2 ( n - k ) ( 1 - q

I I=k-
1 2 k)

(19) PrI max IN(K)I a (+c)(n-k)(-qk)] _ ()e- ¢(n-k)(-q

IKI~k
To obtain (16) we put = 2(klogi /(n-k)(1-qk)). We can use

n - )k in (19). Then the right hand sides in (18) and (19) both . 0

sufficiently fast. Thus (16) is proved, provided that e ( 1.

We consider two cases. Let 0 < a < 1 be a constant.

When kpk _ p) 1/P _ p < 1 2

2 koe 2nkp

So -  < klo 0 since logn/np 0.
i. 14

(n-k)kp(1 - )

2 k log-When kp > a, qk :(1.p)k < e-kP < e-a < 1. So £ < k 0

Se <1. S -s(n-k) (1I-e-=) .0'since logx -0 when x = .

This completes the proof of (16). .

To prove (17) it suffices to show that, almost surely,

(20) every node in X-KI is joined by a path of length 5 2 to at least one .:

node of K1 where K1  {X 1,X2,...Xk}.

The events.

A(J) [Xj is joined to K1 by an edge)

-I ..
.- % _
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B(J) (Xj is joined to K1 via a node Xi  Xj, Xi k 11}

are independent for fixed j because they have no edges in common.

Pr(A(J)) 1 - (l-p)k = PO, say

Pr(B(j)) 1 - (1-pOp)n-k-1

Hence, if N is the number of nodes not within distance 2 of K1, then

Pr(N > 0) 5 (n-k) (1-p)k (1-pp)n
-k - 1

< (n-k) (1-pop)n-1 
,d'-P

< ne- ( n - 1) po.

If kp 1 then pO >- 1-e-1 and so

Pr(N > 0) 5 n- 0/2 using p > wlogn/n.

k 2o2k
If kp < 1 then (1-p)k  1 -kp+ and hence Po > k and then

-2 2..

12p2 
. .-

Pr (N 0) _ n using kp > w logn/n.

This proves (20) and therefore (17) and the lemma. 0
be J *.

Lemma 5 Consider 2 5 k i5ogn. Assume p w> and kp2  wheren b n nwhere,

-0 Co. Then

ZLP max(n-k, 2n-nkp(l+o(1))) almost surely.

.1k~ .k
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Proof: Given a node Xi, let Ni(i) =Xj: dij = 1 and N2(i) .Xj: dij 2}.

First we give probabilistic estimates of INl(i)I and IN2(i)I. We will

show

(21) min 1N(i)I (1-o(1))np almost surely,i .r ,: .

(22) max 1Nl(i) = (l+o(1))np almost surely, and
i

(23) min 2(i)I min( k, (1-o(1))nq) almost surely.
i

Note that INi(i)I is distributed as B(n-l,p). So, by Lemma 1,

.- . *-I.

Pr( min IN (i)l -< (1-e)(n-1)p) < n e-  £2(n-1)p _ "

1 2

Pr( max INl(i)I (1+)(n-l)p) s n e (n-1)P

Putting e 3(logn/(n-1)p) yields (21) and (22).

Now consider IN2(i)I. We will assume p + 0 (otherwise N1(i) is a

dominating set by Theorem 4(a), and (23) follows). Conditional on INl(i)l, -

the quantity IN2(i)I is distributed as B(n 2 ,P 2 ), where n2  n - INl(i)l - 1
IN1(i)l

and P2  1 -(l-p) By Lemma 1,

2P2

Pr( min IN2 (i)l S (1-E)n 2P2) s n e ,

, * .- a'
," .1*i

", ,

Set e = 3(logn/n2P2 ) . We have to show e < 1. Note that n2= (1-o(1))n and
2

P2 1 - (1 -pe)(l+O(
1 ))np > 1-e( 1+°(1))np almost surely.

M. %!f l. _%
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22

If np 2 6 > 0 where 6 is fixed, then

C 2 log n.-- < 0 .
1+o(l1) )n(l1-e - 6 

7) %''- .

If np2  o(1), then

2 _logn 1 lo 2n )2

4 2 2 logn np
np

So we have just shown that, almost surely,

.

min lN2 (i)I >-(1-o(1))n 2P2 "
i

Next we will use the fact that kp , -_ to show n 2  o s

2If np 2 ! 6, 0 < 6 < 1 fixed, then almost surely

n2P2 > (1+o(1))n(1-e2) - for k _ 2 and 6 close enough to 1.

2 -(1+o(1))np 2 2If np 5 6 < 1, then 1 - e 1  • np2(1 o2- ' - - 2 . So-

n2P2 > (1+(1))n
2p2 (1 - ! > (1+o(1)) 2- (1 - ) almost surely.

a.. :

This complete the proof of (23). ,

Now we are ready to get a probabilistic estimate of zLP. First we obtain

an upper bound by considering the solution .

(24) x = for J1,...,n an. Yij defined in Lemma 2.
n• * ,% 2*
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Let 6 m IN1(i)I be the minimum degree of Gn(P). Note that, if

k , then zLp n-k. For, using the solution (24), we haveds>k n Jznkk LP*i

.dy. 1 for i=l,...,n. On the other hand, if 6 - 1,

then n -1 - 6 (yij only takes positive values for points

Xi at distance one or two of Xi since, by (23), the number of points at

distance 2 is at least min( k' (1-o(1))nq) which is more than the
n

- 1 - 6 points needed.) Therefore z < n d. < 2n-k6, almost surely.
i L

To obtain a probabilistic lower bound for zLP we consider the dual bound
I.".%"1

given by Lemma 3. We put u. 2 - nfor i=,...,n and let A denote the
n

maximum degree of Gn(p). Then

z > n(2 - n) - kA(1 - n) = 2n - (1+o(1))nkp almost surely. ...LP n n

This completes the proof of Lemma 5. 0

Proof of Theorem 4(b) .

It follows from Lemmas 4 and 5 that -a. .

ZIP - zLP k(+q max(1,2-kp)
____ (1almost surely

ZIP 1+qk

Sq- (1-kp)

k ..q + 1

Setting a : (1-p) - I P and kp a , we get

-z 7IP LP 1- (1-s+ a almost surely.

ZIP 1 +a'

It is easy to check that the maximum of this function is achieved when p 0

1PJ

.. r
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and a 1 Then its value is -"-

An interesting range of parameters which is not considered in Theorem 4

is the case 2  k logn and p > wlogn - kp2 where w. . In this

range, the expressions for Zip and zLp are more complicated than those found

in Lemmas 4 and 5. However we conjecture that zIP - zLP - 0 almost surely.
ZLP

In the range covered by Theorem 4, it is easy to identify conditions
z

under which the ratio is almost surely bounded away from 0. For
zLP

example, consider

(25) : < kp < 1/e , k ? 2 and -'-

112
(26) (w logn/n) !5 p !5i-

where wm and 0 < c < 1 is fixed.
2

Then klogb = kp (1 + 2 + 3+ 1- 2 So k _< logbn for n
.-- 

%C

large enough and, by Theorem 4(b), there is a fixed value f(e) > 0 such that

' (27)z - f(C.) almost surely.
ZIP 

4.

In addition, we can show that, under these conditions, a branch and bound

algorithm based on the LP bound zLp almost surely requires close to complete

enumeration.

,-. .. 4.

Theorem 5 Assume (25) and (26). A branch and bound procedure that branches

by fixing a variable xj to 0 or 1 at each node of the search tree which is not

pruned, and uses the LP bound to prune the search tree, will almost surely

expand at least n(1-° (l))(k -2 ) nodes. (The number of feasible solutions of

the k-median problem is (n) n( -°(I))k .

Proof: We first note that, under the above assumptions, c < klog b <5
2

e
and therefore

(28) e-1/c 2  k C ".
(28)e < q < e.

.4-:- ... _ . ... . .-- .. .. , . , J . ... . ....- ,._ . *4* .... ,%. - - . , . . ..-4., . - -. _ . , ._ .._ .- .. ... ... . ... . ,-.-.. .... .- .. .. ...... -. . .. .. .., - .... • .
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In addition, the assumptions of Lemma 4 hold and k o(nI/2 ) so that

(29) Zip > (1-o(1)) n(l+q k ) almost surely.

Let zLP(Jo,Jl) be the LP value of the subproblem where Jo = (J: xj is

fixed to 01 and J1 : xj is fixed to 11. '1/

Let %0I and 8>0 be fixed. We prove the theorem by showing that, for B

chosen small enough, the following property holds almost surely. *.

(30) For any Jo,J1 c [1,2,...,n) such that Jo n J 1 0, IJoI 5 ronl and

Jill : [aki,
(31) zLP(JO,Jl) < Zip.

This implies that the algorithm must explore at least

(32) rBnl + rakl n ak n1-o()ak nodes.)rkl - () n

To verify (32), imagine that setting xj = 0 means branching to the left

and setting xj= 1 means branching to the right. (30) - (31) imply that any

tree contains all possible paths which make [aki right branches and rnl

left branches. The number of such paths is precisely the left hand side of

(32).
We now turn to the proof of (31). As increasing Jo or J1 only serves to

increase zLP we can restrict our attention to 1Jol = ronl and jJ1  = fakl.

Using Lemma 1 we can easily prove that the following holds almost surely

for Gn(p):

(33) J c {1,2,...,n} and IJl = rakl implies

IN(J)I > (1-o(1))n(1-qak) (see (18))

Furthermore, it is easy to see that ".A

(34) diam (Gn(P)) = 2 almost surely.

where diam refers to the diameter of Gn(P).

Indeed Pr(there exists i,j c {1,2,...,n} such that i,j are not joined by

a path of length 2)

*.I* .'.,

... .. . . . ..: .
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2 ( ) (1 -p2 f 2

Sn2e-(n-2 )P2

n2e - log n-2)/n 0(.)

Thus (34) is proved (Pr(diam(Gn(P)) : 1] p 0 0) To obtain an

upper bound on zLP(JO,Jl) let

0 if JEJo

01x if JEJoJ

where y (k-[akl)/(n-rsn1-rakI).

The values for Yij are then chosen as follows:

icJ 1 C Y :I and yiJ = 0 j * i

i N(J) : = 1 and yij = 0 j * t

where t is a node of J n N(i).

i i J u N(J): the values are as defined in Lemma 2.-:

With this solution we find, using (34) that

di  0 if i j JjM

:1 if i e N(JI)

we <(-s i + 2 (1-Y(6-si)) if i i J1 uN(J 1)

where si = IN(i) n Jol , 6 is the minimum node degree and A is the maximum

node degree in Gn(P).

To compute an upper bound on zLP, we will distinguish between the cases

y6 5 1 and y6 > 1.

First assume that y6 > 1. We use the bound

di S y(6-s i) + 2(1-y(6-si)) _ 1+ys.-

zp 5 IN(J1) I + (1+',s i) >;
iiJIuN(J I

< IN(J1)I + n-IN(J1)I + yalIJol

-- , . p.-

d? /P' . .%
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B(k-[qk1)pn + - r n + o(n)'1-0

Since kp is bounded above by a constant as a consequence of (25), we simply

choose s small enough to get our bound on zLP. Then (31) follows from (28)

and (29).

Now assume that y6 5 1. We use the bound

di < y(6-s i) + 2 (1-y(6-s.)) = 2- y6 + Ys

LP1 1 1
zLp < IN(J1)I + (2 - y6 + vsi)

i1 JUN(J1)

- IN(J 1)I + (2 - y6)(n - IN(J1)I) + YalJol

- (2-y6)n - (1-y6)IN(J 1)I + yIJoI
qFkl(- k-rckl P + 8(kF _"

[1 +q 1- . k ) pIn o(n)

where the last inequality follows from the relations
ii '~N(JI a ( 1-0(1)nOl-qrakl)i:

y6 = (1+0()) k-fak1
- ~1-B 4,

A = (1+o(l))np.

Therefore %- .

Z - zp [q ((l-p)m-1+mp) - mp( 1-qkl)In + o(n)
4. IP LP 1cii

* where m k-rakl. Note that y6 - < 1 implies mp < 1.
1-6

Next we show that Sm = ( 1-p)m - 1 + mp is bounded below by a positive

constant. This will imply that Zip - ZLp > 0 by choosing 8 small enough.

We assume that a is chosen so that a I- 1

This implies m a 2. Now

m4
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SM  = SM 1 + p(1-(l-p)m-l)

>1 SM_ 1 + p(1-e
- (m - 1)p )

M-1
a S2  p (1-e- (i - )p )

i=3
p2 + p(mLm/2J ) (1.e(Lm/2J -1)p). ..;-

If k is fixed, then p is bounded below by a constant as a consequence of

(25). Therefore S is bounded below by a constant.

If k * -, then m - (1-a)k. Thus mp and hence Sis bounded below by a ,.

constant using (25).

This completes the proof of (31). Note that (32) and the condition

1 k imply the bound nl1- 1 " k-- announced in the statement of the

theorem. 0

In [4], a different graphical model is associated with the variation of

the k-median problem known as the k-plant location problem. The k-plant

location problem is defined using two sets X =X 1, .. , Xn } and.Y = {Y1, "",

Ym].  The quantity dij is defined for each 1<im and 1<j~n. The problem
m

consists of finding a set ScX, ISI = k, that minimizes I min diJ
i=1 jES

A k-plant location problem arises from a graph G by defining X as its

node set, Y as its edge set and dij 0 0 if X is incident with Y , 1

otherwise. (The problem is to find k nodes that cover the maximum number of

edges of G.) It is shown in [4 that

Z.p = zLP almost surely

when G Gn(p) is a random graph with O<pl-€, E fixed, and

k < no, a<1/6 fixed.

4. A Tree Model

This section is concerned with the following tree based model: we are

=.4. -- %=.
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given a random tree Tn with node set X = [X1, ... Xn } where each of the n
n - 4

different trees is equally likely to occur. The distance dij is the number of

edges in the unique path from X to X in Tn. This section contains atit n w o

probabilistic result (Theorem 7) and a deterministic one (Theorem 6). .1

Kolen[13] proved that Zip zLP for-every SPLP defined on a tree. For

the k-median problem, this equality does not always hold as shown in Theorem".

6. In fact we show in Theorem 7 that, for random trees on n nodes, the number

of values of k such that zLP i zIP is almost surely at least cn, for some

constant c > 0.
4 .. .;

'I * . '.t

Theorem 6 - A

(a) For k 1 1 or k > , Zip : Zip for every tree on n nodes.

n-1(b) For 2<k< 2-J, and n * 8, there is a tree on n nodes such that zIp

*z ZLP.
z -z

(c) There is an infinite family of trees such that ZIP LP k-
ZIP

It would be interesting to perform a worst-case analysis of the k-median

k-1problem and its LP relaxation on trees. We conjecture that the ratio

found in (c) is the worst-case bound.

Proof of Theorem 6: For the i-median problem, it is well-known that Zip zLP

for every choice of dij, 1 _< i,j _< n. For example, this result appears in
Mukendi [18].

When k _ 2: , ZIp ZLP n - k follows from the fact that every tree

on n nodes has a dominating set of cardinality at most (A tree is

bipartite and a color class dominates it).

To complete the proof of Theorem 6(a), it suffices to consider the case

nwhere n is even and k -- 1. The only trees which do not have a2:.-
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dominating set of size k are constructed inductively from a path with 4 nodes

by adding paths Pi = (vl i , v21, v3 i) where v1' is one of the nonleaf nodes of

i i - ~-the current tree and v3 are two new nodes. (See Figure 2(a)). From the ..
n

construction zip = n-k+1 = + 2. Using the dual values uj = 2 if X is a
IP1

leaf, 1 if not, Lemma 3 yields zLp + 2. Therefore Zip zLp.

G2.4
X//

I. .. """".
,/ .C -

OK (a) C)el (b) (c) ;r.. .>":

Figure 2 (c)

To prove Theorem 6(b) when .n is odd, consider the tree of Figure 2(b). .

Let P n-1 An optimal solution of the k-median problem is to take S

[X, X2, X4, X6, ..., X2(k1)). Then Zip : 3p - 2(k-i). We get a feasible
p-k ndk-i

solution of the LP relaxation by setting X: p- _ and for i : 1,

., p. This yields

zLp - (3p - 2pk - p + k - 1) / (p-i).

Therefore iz~Lp k>-1 0.=

To prove Theorem 6(b) when n is even, n * 8, we first consider the case

k a 3. Add a node X2p+2 adjacent to X2p to the tree of Figure 2(b). Then N.

it is optimum to choose X in S and we can also choose x2p = 1 in the LP _____ -
'%T '-

solution. Removing X2p, X2p+1 and X2p+ 2 , we are back to the case where n is

,. -. .%

odd and k > 2. Now consider the case n > 10 even and k : 2. Add three

nodes to the graph of Figure 2(b), namely X2p+1+i adjacent to X2i for i :

1,2,3. Then Zip 3p+3 but there is a better LP solution, namely x, I and

-. t
.,..-. .* ...-..-. -. . . . . . . .
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x2 =x 4  x6  1/3. This yields ZLP = 3P + 1.

* Finally, to prove Theorem 6(c), consider the tree of Figure 2(c). The

node X has degree k+1 in the tree. Each branch incident with X, contains b

nonleaf nodes and z leaf nodes where b + -, £ . and I grows much faster

than b. We denote by X2 , Xk.2 the (k+1) nodes of the tree which are

incident with leaves. Then, an optimal solution of the k-median problem is

(X1, X2, X3, ... , Xk"

2Zip (k-1)1 + 2(b+i)1 + O(kb2 )

. ,-....

where the last term accounts for all the nonleaf nodes. Ignoring the lower

order terms, % _d% _

z - 2bit.
2b.1 k-i

To get an optimal LP solution, set and xj = for j : 2, C-

. k+2.
k-i 1 2 +1 bl { ie "-%zLp :(k+l)z x + (k+1)% x (b + O 2kb), ie.

*k+i1.
zLP b-

kk1 1

P kLP
___LP k k-1Therefore Z 2 2k

0
.1

N %

In the next theorem we consider all the k-median problems defined on a

tree, namely all 1 5 k s n where n is the number of nodes in the tree.

Theorem 7 Let Tn be a random tree. There exists a positive constant c such

that, almost surely, Zip zLp for at least cn different values of k.

.'. . •

o,, . *%*

LP" ,'°

•L.-:;
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Proof = Consider a random tree Tn = (Vn, En) and a fixed tree T : (V,E).

Let v e V. We say that Tn contains a copy of T suspended at v if there

exists V' c Vn  such that

(35) Tn(V') is isomorphic to T under a mapping 0 V V'.

(36) there is a unique edge of Tn with exactly one end, say v', in V

and, in addition, v' : 0(v).

Let m = IVi and a = the number of automorphisms of T. Then m!/a is the

number of distinct labeled graphs on m nodes which are isomorphic copies of

T. We first prove that almost surely Tn contains at least (1-o(1))(n/ema)

copies of T suspended at v.

For each V' c V IV'= m, let

We nti f  (35) and (36) hold, a e nrw y o6(V'): {0 otherwise. - ,

; We note that, if V'nV'' 0, then a(V')6(V'') =0..%'

Let N: . 6(V')V' :Vn .;

the number of copies of T suspended at v contained in Tn-

Now for a fixed copy of T on a set of m nodes, there are (n-m)n-r- 1 ways of

choosing a tree on the remaining n-m nodes and then joining it to v. Thus

E(N) (n ) (m!/a) (n-mn-ml / nn-2

- n/ema.

Using the Markov inequality Pr(Y > a) < E(Y) with Y (N-E(N))4,

f ...... ~
E(Y) : 4 and a : we get the Pearson extension of the Chebychev

inequality.

*%. 1
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Pr{IN-E(N)I > X s-
Xb

In terms of factorial moments 44 is given by

+ 6u[2

"4 ' 4 u[,] U[31 + 6[][1-3P[l !

- 12U[1]4[2] + 6u[3

+ 7u[2] -4u[ 1 -

where u[i] is the ith factorial moment.

(m!)1(n-im) ! a n-fl
Oli] W) i(n-im) a n-2 (-m

We find

L -2m/n + 0(12)

~L.

e-21

evaluate this row we find that terms in 1 and I/n of the exponentials

142 11.2

disappear simultaneously, leaving a term in [ 0(2 , i.e. O(n2).
3] 3n

Imian the exrsinextoro U4paoeso 3 thertrwi the power of nhe w

evalatethisrowwe ind hatterm in1 ad 1/ oftheexponentials

disappear simultaneously leaving u[31 0(), i.e. O(n2). The last two rows
Pare O(n2 )

.%;

Thus U4 O(n2 ) and setting X =n4+4 gives

........ .......
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n 3/43 1
Pr(IN - (1+E) -I n ) 0(

e a n

Now we consider the fixed tree T given in Figure 3.

ii
.1..,...

Xq.

Figure 3.

Let S be an optimal k-einsolution in T. We will let k increase from 1

.to n. Consider any copy of T suspended at v contained in T-, say (VE).

%Note that, if IV'nSl 1, then v E Sk This.implies that there exists a
kI k

K such that for k > K, IV'lS kI is a nondecreasing function of k which goes

* from 1 to 15( m).

Let z1 p(V') min d When IV'nSk 3, a opilse

ic JJq'

lJnk i v 1, X21 with z1p(V') =14. However, consider the fractional

%1
%S solution x, x2  ~1 for the variable associated with node

Figur 3. S. 

v, and x 0 for the other nodes of V1. Let yjbe defined as in Lemma 2 and

ie % -%
Lt kVb a y opia heabov frction alTn  sout ields kincreas ro 13.5

an therefore, when IV' S

Since T contains almost surely at least (1-o())n/m!a copies of Tn

suspended at v, there are at least as many values of k for which k > zLP goes

0

ic'JSd j  
l ''-,,_ .~ p

Vi,

Z ..
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5. The uniform cost model.

In this section, we look briefly at the model where the djj's are drawn

independently from the [0,11 uniform distribution, 1_i,jn. *:.-

Here we do not assume dii = 0, dij = dji or dij < d ik+dki, as we did in

the other models. The quantity dij is interpreted as the cost of assigning Xi  6

to X1.

The main result of this section states that, when k _: n(e-1)/e, then
SsZIP-ZLP k-1

Zip : zLp almost surely, and when k = o(n/logn), then -- almostz IP 2k

surely. The analysis is made possible by the fact that, in those ranges, the

k-median problem is almost surely trivial to solve exactly or approximately.

(When k >z n(e-l)/e there is an obvious optimal solution, and when

k : o(nlogn) every solution is close to optimum.)

Theorem 8

(a) Suppose k = o(n/logn). Then

Zip ~ n/(k+1) almost surely

ZLP ~ n/2k almost surely.

(b) Suppose k > (1+o(1))n(e-1)/e. Then

Zip :zLp almost surely.

Proof: Let S be a fixed set of size k. If we take xj :1 for jES as our

solution to the integer program, then the di : min d are independently -JS d ij
distributed as the minimum of k uniform [0,1] random variables, i.e.

Pr(di>a) ak for Osa_1,

and hence .E(di ) : 1/(k+I) for i = , ... , n. We first consider ,\S" .

k 0(n/). Applying Lemma 1 to D d1 + ... + dn, we have

n,

4-.

d. d . ' % . ,. . .- ~ *. *~ .. . ... . -. ° -=a *1



% b%" "

35 .. .

Pr(ID-n/(k+l)l _> n/(k+l)) 5_ 2e - n / 3 (k + 1 ) ""

-15 (n en3k+l) -n1/
Now put C = n1/5 In addition, )e-= o(e1 0 -zip

n/k+1 almost surely.
k/1/6 . hn =( )_- . .. '

Assume now that k/nSet Then w n
klogn +m e

6i=dji  if di < w/k

0 otherwise

andnoe hat E(.) 1 w k 1w-0(1) 1..~
and note that E( i _1)) I We rescale the 6i to

[0,1] and apply Lemma 1.

n1 3 (1-o(1))

Pr( I a/(w/k) < (1--) n E(C /(w/k))):_ ei W "'

P

*As 6i < di we deduce

_ nn(1-o()) .<n1-0(1))< (n) 2w3 :''''
Pr-z IP( : k+1 k e,

and hence if k : o(y-) "

ZIP > 1-o(1))n almost surely.

On the other hand, taking S = (1,2,... kj we can show easily that --,.

z k+ almost surely.

Now we prove the second part of Theorem 8(a). We put xj = k/n as usual.
-." .....

Then d i is dominated probabilistically by k/n times the sum of the rn/kl

, ," . " , . . "%_-.
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smallest out of n independent [0,11 uniform random variables. Thus
r n/kl Y -,

| E(d i ) _< (k/n) 7.t/(n+l) = (1+o(1))/2k. "
t=l 1

Applying Lemma 1 In the usual way shows that

zLP < (1+o(1))n/2k almost surely. %

On the other hand, consider the dual solution u i  1/k for i 1, ... ,

n. Then, by Lemma 3,
-'

n n
zLP > I U - k max (i=.(u - d i j )•

i=I J=1,... •n ,i=1

N As in Theorem 2, for fixed j, we consider random variables Ui  (ui-d.)-
1. 1,~Setting ui .- we find E(Ui) 2k 2 Rescaling the Ui to [0,1] and

11 2k2 "  
- ,,,

applying Lemma 1

n n 3 2k .. Nw
2 n

n n 2
Pr( . k Ui > (1+) ') - e -2k

Hence, if n/k 8 e3 logn where e -, then taking e l/e yields

nn.
z > - k(I+) n almost surely
'LP k 2 srl2k

:( 1-o(1)) -'--

This rompletes the proof of Theorem 8(a).

Now consider the case where k is sufficiently large so that each point Xi

can be assigned to the cheapest point Xj(i), defined by dij( )
'-N,".

min dij Then clearly Zjp zLp.
i...,n

For j 1,. .. ,n, let Nj be the number of points Xi assigned to X

according to the above scheme. N is asymptatically distributed according to

V. jN

kN'.

!" - , ,-.-;".- -, , . - "-.-.-" . - - - " " € <,.... ." .. ,'.' -- .. , , ,'- ,' -'. ." "-" -v " ,, - - .4: '



37

a Poisson process with mean 1; in particular Pr(Nj=O) l/e. Therefore
n=1) n/e Toso , Q }

E(IfJ Nj:O}I)- n/e. To show Z : I5: Nj O}I _ (1+o(1))! almost surely
E(O(Z))foanno-.'

we use the generalized Markov inequality Pr(Z >_ a) - () for any non-
*(a) (+) hr

negative monotone increasing *. We let k = [ni/3], a = (1+e)2 where

n- /4 and 0(a) max {O,a(a-1)... (a-k+1)}/k! and note that *(Z) the

number of k-sets S for which Nj 0 O, jeS. This gives

(n) (1-k)n'2'-,"""

e a(a-1)...(a-k+1)Ik!

.S.

-k:0 ((l+c) - )

This completes the proof of Theorem 8. 0

As for the Euclidean and graphical models, we can show % *.4"

Theorem 9 Suppose k = 0((n/logn) /2 ) and k - . Then an EP based branch

and bound algorithm almost surely explores at least n(I- ( I))k nodes of the

search tree.
* S%

Proof : Let zLP(Jo,J I) be the LP value of the subproblem where

Jo = : xj is fixed to 0} and J : x is fixed to 1}. Assume that

a < 1 is close to 1, that 8 is large and that a and 8 have been chosen so that

ak and Sk are integer. To prove the theorem, it suffices to show that, almost ... '.*."

* surely,

(37) for any Jog J1 E {1,2,...,n} such that JonJ 1 = 0,

JJ1l 
-< ak and 1do1 _< n-(8-a)k, we have zLP(Jo,Jl) < Zip.

As increasing Jo or J only serves to increase zLP, we can restrict our

.'- ..
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attention to Jill = ak and - Jol = n-(8-a)k. Let L = ak, K Bk and

n-IJl-IJ - B - ' To obtain an upper bound on zLP(Jo,Jl), let

(0 if JEJo

y if jiJUJ1 V

Consider a fixed i and suppose ci < c . .. 5 Let t mins

is e J1}. Let Yij be given by Lemma 2 and di  I dijyij. The expected

value of di, conditional on knowing the value of t, is

t tI-.W

(38) Exp(dilt) =Y I + + -;'<,-R:

________v.__--

y(t-1)t if t " " 'K+" - 2(K+1) < [y-1

and

LY l i y(y-lLy 1  1(39) Exp(dilt) = Y i F+"- +  J(-Ly ) KlyI'

y(2y- l....'.
" 1 -Y- 1 )(Y-11+1) if t > Ly j -""

Now
= (KIK",."t),

(40) Pr(t) - K)(K)L

Using (38) - (40), we get the expected value of di .

-I

K - )Y ( t _, ".o-t
Exp(di) K L1 K-K K-1

(K+ )(L) t 1(K+ 1.-...
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(2y L1  ) Y (1y- 1+1) K-t

2(K+1)(~ L Op-t>ty'lJ

Now, as may be inductively verified,

+ L-1 + AL) (A+ 1)

K-1) K + (K1) -A(K-A) (K+1 A)

K-2 (K-3) + K-A) K. 1) -K-A)

K -A K-A,-

2(A+1)+1 - 2

Therefore.

Exp(d.) 1 lK+I) y-l YlK-[1 I) 1-ly-lJ)J

, (K-1I ) y-1 L l+1

1 K+1)  t-1](L 1+I) K-Ly 1

2(K+1K) [L L

11
-2[L1 )-1, K-LY - I 

- 2 K-Ly--2(L J+ L+1 ) L+2 I)]

+ (2y-1L )Ly + (K-Ly - 1I)

(K+) ( K +1

Now LI 1 L2) (k-L)(K-L) and (K - LY- J)

Hnr-ay- 1 LiKcKle 1a
Hence, for a and 0 fixed, where a is close to 1 and a is.-'
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large, and for k -,

Exp(di) = (1-() + I (K-[y J)] (1+01 -

_[ (1- ) (1-0) l o( 1 0 + 1-(1 K-S2 k  2(-a)k +  kL

1+0(y) (K_-1 ](1+o(1)):
+2( 1-m)k Lk

CI ! .(1Cs 2 1- -= 1k .,

~ [ - ~-i~ + + o(_ 2 e 1] (1.i0 ()) ___

1(1_1)2 1-a. 1( " -' ' 1+0(1) .4W 0
e k1

Let 2 Then

Exp(d i) [ + o(I- e )J (I+0()).

Now 1)2/ 1 c, e 1 a as a 1. Thus, by choosing a close to 1,

we get

, %-.%

1 1/2Applying Lemma 1 with e ( log n we get

zLP(Jo,Jl) n " (1 -

nB. .,
3k logn11 2',"'..,

with probability at least 1 - e wkeB 1 - 3--, We have

to branch for all Jll 5 (k and IJol 5 n-(B-*)k with probability at least

-m-

• . • • o . .. , . . . . . .-. .,* -'
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nB
(n 3k logn sn (n (a )k n

S- kCk ) e 1 since k) < and
logn

This proves that, almost surely, (37) holds. As a consequence, the number of -

branches in the search tree is at least (-k n (o(l))k

6. Computational Experience

The previous sections provide asymptotic results as n * =. In this

section, we report our computational experience with medium-size k-median

problems for the four probabilistic models introduced earlier. This ,.

computational experience is based on the solution of about 3300 random

problems with n = 50 points and an additional 950 random problems with n = 100

points. The description of these problems is given later.

For each problem we computed Zip and ZLP. The value of zLP was obtained "'

by solving .a Lagrangian dual by subgradient optimization as explained in (3].

In the process of computing ZLP, this algorithm generates a feasible solution

at each subgradient iteration. Of course, if it happens that the value of the

best feasible solution generated equals zLP, the algorithm terminates since,

then, zlp zLP. For most of the test problems with no gap Zjp - zLP, the

algorithm terminated in less than 100 subgradient iterations, due to the above

stopping criterion. If, after 100 subgradient iterations, there was still a

SI, gap between the best feasible solution (an upper bound on zip) and the best '..
,.

Lagrangian relaxation (a lower bound on ZLP), we resorted to branch and bound

to find Zip. When the subgradient algorithm clearly converged to a value

different from Z1 p, we accepted it as showing that Zip * zLp. In the cases ... :-

where the subgradient algorithm converged to a value close to Zip we used the
SI.o

simplex algorithm to compute zLP. This allowed us to settle cases where there

was a very small but positive gap Zip - ZLP.

S*. . . .. . .. 5 .



42 Lb. :;

" Among the 4250 test problems that we generated we found about 3700 such

- that Zip = zLp and about 550 with a gap Zip - zLP. Now we give a detailed

description of these results.-.. -

The first set of experiments involves Euclidean problems. We decided to

test whether approximating the Euclidean distances had an influence on the gap

Zip - zLP, since we suspected that data accuracy might be partly responsible

for the discrepancy between the computational experience previously reported

in the literature, namely few test problems were found to have gaps ([2], [31,

[6], [10], [11], [19], [20], [23], [241), and the results of Section 2 stating

that asymptatically most instances should have small but positive gaps. To

our surprise, data accuracy had little influence except maybe for the

possibility that a very coarse approximation produces harder k-median

problems. (These problems are more combinatorial, often have alternate

optimal solutions and, in our experience, optimality was harder to prove).

We generated 10 problems, each with 50 points occurring at random in the unit

square. Then, for i = 1,2,3,4 and 5, we multiplied each point coordinate by

10i and rounded it to the closest integer value. The Euclidean distances were

then computed and rounded to the closest integer. The k-median problem and

its LP relaxation were solved for each 2 5 k _ 10 and 1 5 i 5 5. For each

such pair i,k, Table 1 reports the number of problems (out of 10) with a gap

ZIP " zLP"

VAN

4../

4.. , . . - .. - . . . . .. . . .. . .. . -. ,. ., ., ,, ... .- ,.
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2 3 4 5 6 7 8 9 10 Total

(out of 90)
0 2 1

1 0 2 0 2 2 1 0 0 0 7

2 0 1 0 0 0 2 0 0 1 4

3 0 1 0 1 0 0 2 0 0 4
4 0 1 0 0 1 0 2 0 0 4..
5 0 1 0 0 1 0 2 0 0 4

Total I
(out of 50) 0 6 0 3 4 3 6 0 1 23

I I (out of 450)

Table 1 Euclidean model with n = 50.

Number of instances with 4 gap.

The same two problems were responsible for all the gaps. The average .4''
z ZLP "-

value of over the instances that had a gap was approximately 1.5% -'
ZIP

for i-: 1, .4% for i = 2 and .1% for i = 3,4 and 5. Overall, the fraction of

instances with a gap was about 5%. This is consistent with the computational

*experience reported in the literature. Clearly, the asymptotic behavior

described in Section 2 is not felt for problems with n = 50 points. It would

be interesting to repeat the computational experiment for Euclidean k-median

problems with about n=1000 points. Unfortunately our computer budget did not

allow to do this.

The second set of experiments involves random trees. We generated 100

random trees, 50 of them with n = 50 nodes and the other 50 with n=100 nodes,

using the method described in Even [7]. First we assumed that all edge

lengths were equal to 1 in the trees, and we solved the k-median problem and

the LP relaxation for 2 5 k 5 11 in each tree. For each pair n,k, Table 2

,,,.. .v- -.

4 --- . .* ~ ... .\\
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reports the number of problems (out of 50) with a gap Zip - ZLP.

k 2 3 4 5 6 7 8 9 10 11 Total V

(out of 500)

50 0 2 2 0 7 1 1 1 2 2 18 J.

100 1 2 1 4 0 2 2 2 2 1 17

Total 1 4 3 4 7 3 3 3 4 3 35
(out of 100)1 I(out of 1000)

Table 2 Tree model with unit edge lengths.

Number of instances with a gap.

We also computed Zip and zLP for the same 100 trees assuming non-unit

edge lengths. In this experiment, the nodes of the tree were random points in %..

the unit square and the length or an edge in the tree was the Euclidean 4-.

distance between its endpoints rounded using the scheme explained earlier with

i = 1. The distance between two nodes of the tree was the length of the

unique path joining them. Table 3 reports these results.

p.. 

4%% -

, .'

aI 4%.* _'A.

'*'*..~ . ' %*. ~% . %'%,% 9 lii



k 12 3 4 5 6 7 8 9 10 Total

n (out of 450)

50 0 2 5 6 3 3 0 3 1 23

100 0 2 1 6 1 3 2 5 1 21

Total 0 4 6 12 4 6 2 8 2 44

(out of 100) (out of 900) -' -

Table 3 Tree model with non-unit edge lengths. *,,.

Number of instances with a gap.

We did not find a significant difference in difficulty between the two

*. tree models. Overall, the fraction of instances with a gap was about 4%. -'

Our third set of experiments involves random graphs. First we report the

results when the edge lengths are equal to 1. Starting from a random tree on .-.t

50 nodes, we generated a sequence of graphs, adding 50 random edges at a time

to the previous graph. Table 4 contains the value of ZLp and Zip for each

graph and 2 5 k 5 10. Only one figure means that z Lp ziP. Note that when

Zip ZLP n-k for some graph, it contains a dominating set and therefore

every subsequent graph in the sequence also does.

.: %*

."~

%'",e ,"4-

4 -, <
* **"* ":

*...- #,t..-4.. .-. .. . ,.., . .. , .. (.V .4'.....,2.'.,..'..:.,.:V
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k

number 12 3 4 5 6 7 8 9 10

of edges

49 139 114 98 88 80 72 65 59 54 '

99 89 77 68.5/69 62 57 52 48 44.5/46 42 L.

149 77 69 62 55.5/57 50 46 43 41 40 '''

199 7 63 5 4 45 4 42

249 72 61 52 46 441/45 . . .

299 69 56 48 46 44

349 65 52.5/54 48 45/146 ..

399 62 50 47/148 45 • •

449 61 49 46/147 . .

499 58 47.5/148 46/147

549 56 48 46 .-.

599 54 47/148 .

649 52 47 -'"

699 51

749 50 . .r:"

7991__85/49

849 148/49

* I.

5..
1.-I 1199 48 .. =

Table 4 Graphical model with unit edge lengths.

Value of zLp and Zzp.

<%
A '.-

-
,
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Among the instances where a dominating set did not exist, about 28% had a

gap.

Next we turn to the graphical model with non-unit edge lengths. We

started from 10 random trees on n = 50 nodes. We then added random edges, 50

at a time, until the graphs contained 849 edges. The edge lengths were

computed using the same scheme as earlier. Namely, the nodes were assigned

random integer coordinates in a square of size I0x10 and the length of an edge

was the Euclidean distance between its two endpoints, rounded to the closest

integer. The distance between two nodes of the graph was taken to be the PIN.

length of the shortest path joining them in the graph. Table 5 reports the

number of instances with a gap (out of 10), as a function of the number of

edges in the graph and k.

% %

4.. 0. "

. .- J.

• 9_

4-:

S. * @
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48

:<.

ki

number 2 3 4 5 6 7 8 9 10 Total

of edges (out of 90)

49 1 1 1 0 0 0 0 0 1 13

99 1 1 1 2 3 1 0 1 1 11 V
149 12 1 2 2 1 0 0 0 0 18

199 1 2 1 0 1 0 2 1 2 110
249 1 2 2 1 1 0 1 3 1 112
299 2 1 2 2 1 2 1 1 1 13

349 2 2 4 1 5 1 0 3 2 20

399 1 3 2 0 2 1 0 1 1 11 "

449 3 2 2 1 1 2 2 1 0 114

499 0 1 1 2 1 1 1 1 0 8

549 1 1 4 0 0 1 2 1 1 11-

599 1 1 0 2 2 2 2 0 2 12

649 2 0 1 2 0 0 3.. 1 1 10

699 '0 2 2 1 0 2 2 0 1 10

749 0 1 1 0 1 2 1 1 1 8

799 1 1 0 1 1 1 0 2 3 10

849 0 0 2 0 2 1 0 2 3 110

Total 18 22 28 17 22 17 17 19 21 181

(out of 170) (out of 1530)

Table 5 Graphical model with non-unit edge lengths.

Number of instances with a gap.

:-; ~ ~. .4 .,

For this model, the fraction of instances with a gap was about 12%. The
averge o z -PZP

average of IP-LP taken over the instances with a gap was less than 1%.
ZIP ~..

6S,,,.-!

r..., ,.
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Note that the first line of Table 1 corresponds to the case of the graphical 4_

model where the number of edges is 49x50 = 1250 and, as such, could be added
2

as a line of Table 5. 've,

Finally, the fourth set of experiments deals with the uniform cost

model. We generated 30 problems with random integer costs. In the first 10

problems the costs were in the range (1,10], in the next 10 in the range

[1,100] and in the last 10 in the range [1,1000]. For each problem the values

of Zip and zLP were computed for 2 < k S 10. For each range and value of k,
I_-J

Table 6 contains the number of instances with a gap (out of 10).

,*'.'(

k 2 3 4 5 6 7 8 9 10 Total

range (out of 90)

10 10 10 10 10 10 10 10 6 4 . 80

100 10 10 10 10 10 10 10 8 5 83

1000 10 10 10 10 10 10 10 10 6 86

Total 30 30 30 30 30 30 30 24 15 249

(out of 30)1 (out of 270) %

Table 6 Uniform cost model with n 50. .

Number of instances with a gap.

For this model, the fraction of instances with a gap was about 92%

overall, 100% for k < 8. This fits well with the results of Section 5. The

ZIP- ZLP
value of the ratio was much larger than in the other models. It

reached 18% for one of the problems with costs taken in the range [1,1000] and

.. a.4%
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k 3. Note, however, that this is still far below the asymptotic value of

33% predicted by Theorem 8 when k 3.

7. The Simple Plant Location Problem

Although we proved our probabilistic results for the k-median problem,

they can also be useful for the SPLP. To define an instance of SPLP, we need

fixed costs fj, J=1,...,n, in addition to the distances dij, 1 < i, j -< n.

For simplicity, we assume in this section that the fixed costs fj are all :

identical. S y "-

Theorem 10 Consider the Euclidean model in the plane and assume that

e-11 2  1-en S f 5 n for some fixed e > 0. Then, for the SPLP,

z LP - .00189255... almost 'surely.
IP

Proof. In this proof, Zip and zLp denote the optimum values of SPLP and its

linear programming relaxation respectively. The solutions of the

corresponding k-median problem (with same dij's) and its relaxation are

denoted by zip(k) and zLP(k) respectively.

By definition zLP = min (zLp(k) + kf) min(zlz 2,z3 ), where
k

z 1 min (zLP(k) + kf),
k<w

z2 : min (zLp(k) + kf), and -
uk< .n .'.*,

-logn "S

z min (zLp(k) + kf).

wlogn

-. '. -. -' ,,
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First we compute z2 . From the proof of Theorem 2,

1/31ogn/9
pr(z~p P i 2n (1_o(1)), 2n (1+o(1))] O(ne

3- -iOII) 3 Io~J AkV

and so 2n

z < min n 2n (I+o(I)) k f) almost surely.

( (< k _ 3skurely

w logn

Let t 2 The minimum of the function n+ kf is attained when

k (an,)2. Note that, given our assumptions on f, this value is in the

range ([, wlogn for a suitable w, say w = log n. The minimum value of

the function is (L72n2f/ Therefore

z 27( 2 n2f)1/3 (1+o(1)) almost surely.

Now consider z3. With our choice of w log n, we have

2 Therefore, almost surely,
(log n)

n
z 3  n 2 f

(log n)2

1 /3f2/3 z2-n_27 2 (1+0(1)) > z

(log n)
2  ( -2

Finally consider z1 . For all k < log n, we have zLp(k) a z p(log n).

Therefore z1 i_ zLP(log n). This implies that, almost surely,

2nn1/3f-/3. .

z1  > (1+0(1)) c 1 2 0'z2

3/,w, -g n 
(log n) 

1 /  2 1 ° 1 ) 
>- z ,

""-n

SffL-
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where c is a constant.

We have just proved that N
7LP T-2 a2nf)1l3 almost surely.

Similarly, Zip min (zip(k) + kf). Following the proof of

Papadimitriou (22], we can show that

((41) z i n ( + fk) almost surely, .ip :i/ k
where B .3771967... The minimum in (41) is achieved when k 21 ;

V 2 2 1/3and its value is (Q- n f) (1+o(0)).

z IZL2/3 2/3
So Zip -23 almost surely. J

Similarly, the next result can be shown using the proof of Theorem 8.

Theorem 11 Consider the uniform cost model and assume that
n- 1-E
n -  _ f n for some fixed E > O. Then Z dr

IP - - - almost surely.

8. Conclusion

The LP relaxation (1) - (4) has been widely used in branch and bound

*: algorithms for the k-median problem and has been reported to provide a tight

bound in practice. Our analysis shows that such good results can indeed be

expected in a probabilistic sense for some problem instances, but we also

* identify other instances where the LP relaxation is almost surely not tight.
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The probabilistic analysis is performed under four classical models in

* location theory, namely the Euclidean, network, tree and uniform cost

models. For example, let W = W(n) * = When w < k g in the• - -=~logn i h

Euclidean model, zLP/Zip = .99716... + o(1) almost surely, and when

s k 5 logn in the uniform cost model, zLP/ZIP = .5 + o(1) almost surely.

Our computational experience confirms that large gaps occur frequently in

>', the uniform cost model whereas only small gaps were observed with the other

models.

Another aspect of the probabilistic analysis performed in Section 2, 3

and 5 is that, under various assumptions, branch and bound algorithms must .

almost surely expand a non-polynomial number of nodes to solve k-median

problems to optimality.

Finally, we mention as open problems the questions of describing the

asymptotic behavior of ZLP/Zip as n n when (i) k the
Of 

inPj 
ahe n!. whe..

logn

Euclidean model, (ii) each edge of the graph has a random length dii (drawn
nj

uniformly in the interval (0,1], say) in the network and tree models, (iii)

n n<e-k
logn < n(e-1) in the uniform cost model.

*,* ..

tp %

%-



54

References

[1] J.E. Beasley "An Solving Large p-Median Problems," Technical
Report, DepartmManagement Science, Imperial College, London,
England (Septemb.

[21 N. Christofides a3easley "A Tree Search Algorithm for the p-Median
Problem," Europell of Operational Research 10 (1982), 196-204.

[31 G. Cornuejols, Mr and G.L. Nemhauser "Location of Bank Accounts
to Optimize Flin Analytical Study of Exact and Approximate
Algorithms," maocience 23 (1977), 789-810.

[41 G. Cornuejols, Nemhauser and L.A. Wolsey "Worst-Case and
Probabilistic Aif Algorithms for a Location Problem," Operations
Research 28 (19058. . !

[5] G. Diehr "An Algor the p-Median Problem," Working Paper No. 191,
Western Managelence Institute, University of California, Los
Angeles (1972).

[61 D. Erlenkotteril-Based Procedure for Uncapacitated Facility
Location," Oper~search 26 (1978), 992-1009.

[71 S. Even, Graphhms, Computer Science Press, Potomac, Maryland

(1979).

[81 M.L. Fisher andchbaum "Probabilistic Analysis of the Planar k-

Median Problem,tics of Operations Research 5 (1980), 27-34.

[9] R.D. Galvao bounded Algorithm for the p-Median Problem,"
Operations Rese,1980), 1112-1121.

[10] R.S. Garfinkelebe and M.R. Rao "An Algorithm for the m-Median
Plant Location 1Transportation Science 8 (1974), 217-236.

[11] M. Guignard andberg "Algorithms for Exploiting the Structure of

the Simple Plalon Problem," Annals of Discrete Mathematics 1
(1977), 247-271.

[12] Hoeffding "Pr Inequalities for Sums of Bounded Random
Variables," 1ouhe American Statistical Association 58 (1963),
13-30.

[13] A. Kolen "Solvirg Problems and the Uncapacitated Plant Location
Problem on Treem.an Journal of Operational Research 12 (1983), "7
266-278.

[141 T.L. Magnanti . Wong "Accelerating Benders Decomposition:
Algorithmic Ent and Model Selection Criteria," Operations
Research 29 (1984. Cira Oea

S..%



55

[15] R.E. Marsten "An Algorithm for Finding Almost All of the Medians of a
Network," Discussion Paper No. 23, The Center for Mathematical Studies in
Econometrics and Management Science, Northwestern University, Evanston,
Illinois (1972).

[16] L.P. Mavrides "An Indirect Method for the Generalized k-Median Problem p'

Applied to Lock-Box Location," Management Science 25 (1979), 990-996.

[17] P.B. Mirchandani, A. Oudjit and R.T. Wong "Locational Decisions on
Stochastic Multidimensional Networks" (1983).

[18] C. Mukendi "Sur l'implantation d'equipement dans un reseau: le probleme
de m-centre", Thesis, University of Grenoble, France (1975).

[191 J.M.Mulvey and H.L. Crowder "Cluster Analysis: An application of
Lagrangian Relaxation," Management Science 25 (1979), 329-340.

[20] SC.Narula, U.I. Ogbu and H.M. Samuelsson "An Algorithm for the p-Median "-Problem," Operations Research 25 (1977), 709-713.

[21] G.L. Nemhauser and L.A. Wolsey "Maximizing Submodular Set Functions:
Formulations and Analysis of Algorithms," Annals of Discrete Mathematics
11 (1981), 279-301.

[221 C.H. Papadimitriou "Worst-Case and Probabilistic Analysis of a Geometric
Location Problem," SIAM Journal on Computing 10 (1981), 542-557.

[23] Ch. S. ReVelle and R.W. Swain "Control Facilities Location," Geographical
Analysis 2 (1970), 30-42.

[24] L. Shrage "Implicit Representation of Variable Upper Bounds in Linear
Programming," Mathematical Programming Study 4 (1975), 118-132.

[25] W. F. Stout, Almost Sure Convergence, Academic Press, New York (1974).

[261 E. Zemel "Probabilistic Analysis of Geometric Location problems," SIAM
Journal on Algebraic and Discrete Methods 6, (1985), 189-200.

r:'A

C...-.

AM- % %,
4.%



JU~ x - ~. l.1*~5~ % ~ E E s x -a -u A - k 5 A- ~ V _ W. WWW a % -X - .7 -X

U N O F MT H S P A S4 1L ; 0 0n 0 U ee .M g ., O ) Z D IN S R C T O N S
REPORT DOCUMENTATION PAGE REORE C0O*PL=1T5 ORMoa

I REPORT "UNGS" -2 GOVT ACg9a0k 01144 3. RECIPIENT 5 CATA6.OG MUWIER %

MSRR 527 ;)I % yE Pl1e?&PE OCOEI
4. TITLE(modwall STYEO 4PTAPRDCVRD

PROBABILISTIC ANALYSIS OF A RELAXATION Technical Report 6/86 ___

*FOR THE k-M4EDIAN PROBLEM 6 EFRiGOG Eo

7 III. CONTRACT 04 GIANT t4UMUECAje

Sang~finN00014-85-K-0198
Colin CooperI 04-4
Gerard Cornuej ols

*PERFORMING ORGANIZATION MAKI! ANO A00111ESS 10 RGAM dLLLmaNT. 543.EC..

Graduate School of Industrial Administration 0.AEa, TS
Carnegie Mellon Unkiversity
Pittsburgh, PA 15213 I ____________

":;;X CZ ~ ~ ~ ~ AtakOACIFS1. a T, z

Peronel ndTranig eserc Prgrms6/86 (Rev.)-

Arlington, VA 222171
MOIORw ^GENCY MAI A OQR&SS(I attlefme eM Ceaut5ea Oltice) IS. SECURITY CLASS. (ad tis ...,ao9w

ICNIEDULI

q I ?Sr019UT*o STATFIMENT !!40. Report)

.52

* '.4

0 ISTM.iIUT1Oh STATE41ENT (al the 0abe'auteneted to Weeee ;0. it diffemma Min Aeper)

*S. UPOLQU604'AAY NOTES
. %

19I. KEY UOWOS 'Comeiuu.. reverse *#do Al 04008=7 am idevilep by weekh awe)

20. AA1STRoCT rCeNOOMO OR iVOeeO Od@d It MOOOSeM7m dea l 11101011 OF6,04,1 "1111W

This paper provides a probabilistic analysis of the so-called "strong" line4r
programing relaxation of the k-median probleii. The analysis is performed unddr
four classical models in location theory, the Euclidean, network, tree and

4 uniform cost modeis. For example, we show that, for the Euclidean model and log
n > k > n/(log n) , the value of the relaxation is almost surely within . 3 per4

cen;t o~f the optimum k-median value. A similar analysis is performed for the
other models. We also show that, under various assumptions, branch and bound

Do, 43 EIiOOPNO5SOSLE (over)

S114 002-01-6601SECURITY C6ASSIPICATION OF T1418 PAGE (1110 08le' "Reag

Ir



- - - - - - - - - --

algorithms that use this relaxation as a bound must almost surely expand a non-poly-
nomial number of nodes to solve the k-median problem of optimality. Finally, we
report extensive computational experiments. As predicted by the probabilistic
analysis, the relaxation was not as tight for the problem instances drawn from
the uniform cost model as for the the other models.
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